

WHY THE RULES ARE CHANGING FOR LARGE DATA VISUALIZATION AND ANALYSIS

11/2/10

Hank Childs

Lawrence Berkeley Lab & UC Davis

Supercomputing 101

- Why simulation?
 - Simulations are sometimes more cost effective than experiments.
 - New model for science has three legs: theory, experiment, and simulation.
- What is the "petascale" / "exascale"?
 - 1 FLOP = 1 FLoating point OPeration per second
 - □ 1 GigaFLOP = 1 billion FLOPs, 1 TeraFLOP = 1000 GigaFLOPs
 - □ 1 PetaFLOP = 1,000,000 GigaFLOPs, 1 ExaFLOP = billion billion FLOPs
 - \blacksquare PetaFLOPs + petabytes on disk + petabytes of memory \Rightarrow petascale
 - \blacksquare ExaFLOPs + exabytes on disk + <u>petabytes</u> of memory \rightarrow exascale
- Why petascale / exascale?
 - More compute cycles, more memory, etc, lead for faster and/or more accurate simulations.

Petascale computing is here.

Existing petascale machines

Supercomputing is not slowing down.

□ Two ~20 PetaFLOP machines will be online in 2011

- □ Q: When does it stop?
- □ A: Exascale is being actively discussed right now
 - http://www.exascale.org

Exascale machine: requirements

- □ Timeline: 2018-2021
- □ Total cost: <\$200M</p>
- □ Total power consumption: < 20MW</p>
- Accelerators a certainty
- FLASH drives to stage data will change I/O patterns (very important for vis!)

How does the petascale/exascale affect visualization?

Why is petascale/exascale visualization going to change the rules?

- Michael Strayer (U.S. DoE Office of Science): "petascale is not business as usual"
 - Especially true for visualization and analysis!

d complexity

- □ Large scale data creates two incredible challenges:
 - Outline "business as usual"

- Supercomputing landscape is changing
- Solution: we will need "smart" techniques in production environments
- More resolution leads to more and more complexity
 - Will the "business as usual" techniques still suffice?

Production visualization tools use "pure parallelism" to process data.

Pure parallelism: pros and cons

- □ Pros:
 - Easy to implement
- □ Cons:
 - Requires large amount of primary memory
 - Requires large I/O capabilities
 - □ → requires big machines

Pure parallelism performance is based on # bytes to process and I/O rates.

- Amount of data to visualize is typically O(total mem)
- Vis is almost always >50%I/O and sometimes 98% I/O

- Two big factors:
 - 1 how much data you have to read
 - 2 how fast you can read it
- \rightarrow Relative I/O (ratio of total memory and I/O) is key

Anedoctal evidence: relative I/O is getting slower.

Time to write memory to disk

Machine name	Main memory	I/O rate	
ASC purple	49.0TB	140GB/s	5.8min
BGL-init	32.0TB	24GB/s	22.2min
BGL-cur	69.0TB	30GB/s	38.3min
Sequoia	??	??	>>40min

Why is relative I/O getting slower?

- "I/O doesn't pay the bills"
 - And I/O is becoming a dominant cost in the overall supercomputer procurement.
- Simulation codes aren't as exposed.
 - And will be less exposed with proposed future architectures.

Recent runs of trillion cell data sets provide further evidence that I/O dominates

Weak scaling study:
 ~62.5M cells/core

Machine	Type	Problem Size	#cores
Franklin	Cray XT4	1TZ, 2TZ	16K, 32K
Dawn	BG/P	4TZ	64K
JaguarPF	Cray XT5	2TZ	32K
Juno	Linux	1TZ	16K
Purple	AIX	0.5TZ	8K
Ranger	Sun Linux	1TZ	16K

ranklin

-Approx I/O time: 2-5 minutes

-Approx processing time: 10 seconds

r**esearch div**ision

Pure parallelism is not well suited for the petascale.

- Emerging problem:
 - Pure parallelism emphasizes I/O and memory
 - And: pure parallelism is the dominant processing paradigm for production visualization software.
- Solution? ... there are "smart techniques" that deemphasize memory and I/O.
 - Data subsetting
 - Multi-resolution
 - Out of core
 - □ In situ

Data subsetting eliminates pieces that don't contribute to the final picture.

Data Subsetting: pros and cons

- □ Pros:
 - Less data to process (less I/O, less memory)
- □ Cons:
 - Extent of optimization is data dependent
 - Only applicable to some algorithms

Multi-resolution techniques use coarse representations then refine.

Multi-resolution: pros and cons

- □ Pros
 - Avoid I/O & memory requirements
- Cons
 - Is it meaningful to process simplified version of the data?

Out-of-core iterates pieces of data through the pipeline one at a time.

Out-of-core: pros and cons

- □ Pros:
 - Lower requirement for primary memory
 - Doesn't require big machines
- □ Cons:
 - Still paying large I/O costs
 - **■** (Slow!)

In situ processing does visualization as part of the simulation.

In situ processing does visualization as part of the simulation.

In situ: pros and cons

- □ Pros:
 - No I/O!
 - Lots of compute power available
- □ Cons:
 - Very memory constrained
 - Many operations not possible
 - Once the simulation has advanced, you cannot go back and analyze it
 - User must know what to look a priori
 - Expensive resource to hold hostage!

Summary of Techniques and Strategies

- Pure parallelism can be used for anything, but it takes a lot of resources
- Smart techniques can only be used situationally
- Strategy #1 (do nothing):
 - Stick with pure parallelism and live with high machine costs & I/O wait times
- Other strategies?
 - Assumption:
 - We can't afford massive dedicated clusters for visualization
 - We can fall back on the super computer, but only rarely

Now we know the tools ... what problem are we trying to solve?

- □ Three primary use cases:
 - Exploration
 - Confirmation
 - Communication

Examples:

Data analysis Images / movies **Examples:**

Scientific discovery

Debugging

Examples:

Data analysis

Images / movies

Comparison

Notional decision process

Exploration

Confirmation

Communication

Need all data at full resolution?

No

Multi-resolution

(debugging & scientific discovery)

Yes

In Situ

(data analysis & images / movies)

Yes

Do operations require all the data?

Yes

Do you know what you want do a priori?

No

Do algorithms

require all

memory?

Yes

No

Interactivity required?

No

No

Data subsetting

(comparison & data analysis)

Pure parallelism

(Anything & esp. comparison)

Yes

Out-of-core

(Data analysis

& images / movies)

Alternate strategy: smart techniques

Difficult conversations in the future...

■ Multi-resolution:

- Do you understand what a multi-resolution hierarchy should look like for your data?
- Who do you trust to generate it?
- Are you comfortable with your I/O routines generating these hierarchies while they write?
- How much overhead are you willing to tolerate on your dumps? 33+%?
- Willing to accept that your visualizations are not the "real" data?

Difficult conversations in the future...

- □ In situ:
 - How much memory are you willing to give up for visualization?
 - Will you be angry if the vis algorithms crash?
 - □ Do you know what you want to generate a priori?
 - Can you re-run simulations if necessary?

How Supercomputing Trends Will Changes the Rules For Vis & Analysis

- □ Future machines will not be well suited for pure parallelism, because of its high I/O and memory costs.
- We won't be able to use pure parallelism alone any more
- We will need algorithms to work in multiple processing paradigms